Quantum Markov Process on a Lattice
نویسنده
چکیده
We develop a systematic description of Weyl and Fano operators on a lattice phase space. Introducing the so-called ghost variable even on an odd lattice, odd and even lattices can be treated in a symmetric way. The Wigner function is defined using these operators on the quantum phase space, which can be interpreted as a spin phase space. If we extend the space with a dichotomic variable, a positive distribution function can be defined on the new space. It is shown that there exits a quantum Markov process on the extended space which describes the time evolution of the distribution function.
منابع مشابه
ua nt - p h / 06 02 22 7 v 4 7 N ov 2 00 7 Stationary quantum Markov process for the Wigner function on a lattice phase space
As a stochastic model for quantum mechanics we present a stationary quantum Markov process for the time evolution of the Wigner function on a lattice phase space Z N ×Z N with N odd. By introducing a phase factor extension to the phase space, each particle can be treated independently. This is an improvement on earlier methods that require the whole distribution function to determine the evolut...
متن کاملComparing the Bidirectional Baum-Welch Algorithm and the Baum-Welch Algorithm on Regular Lattice
A profile hidden Markov model (PHMM) is widely used in assigning protein sequences to protein families. In this model, the hidden states only depend on the previous hidden state and observations are independent given hidden states. In other words, in the PHMM, only the information of the left side of a hidden state is considered. However, it makes sense that considering the information of the b...
متن کاملLattice-Plasmon Quantum Features
in this work, some of the lattice plasmon quantum features are examined. Initially, the interaction of the far-field photonic mode and the nanoparticle plasmon mode is investigated. We probe the optical properties of the array plasmon that are dramatically affected by the array geometry. It is notable to mention that the original goal of this work is to examine the quantum feature of the array ...
متن کاملInstantaneous stochastic perturbation theory
A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.
متن کاملComputational Methods in Quantum Field Theory
After a brief introduction to the statistical description of data, these lecture notes focus on quantum field theories as they emerge from lattice models in the critical limit. For the simulation of these lattice models, Markov chain Monte-Carlo methods are widely used. We discuss the heat bath and, more modern, cluster algorithms. The Ising model is used as a concrete illustration of important...
متن کامل